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Abstract
The heat capacity anomaly at the transition to superconductivity of the layered
superconductor MgB2 is compared to first-principles calculations with the
Coulomb repulsion, µ∗, as the only parameter which is fixed to give the
measured Tc. We solve the Eliashberg equations for both an isotropic one-
band model and a two-band model with different superconducting gaps on
the π -band and σ -band Fermi surfaces. The agreement with experiments is
considerably better for the two-band model than for the one-band model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The nature of the superconducting state in MgB2 has been characterized by a broad range of
experimental and theoretical methods, and many basic properties have been unambiguously
established since the discovery of the 40 K superconductor MgB2 by Nagamatsu and
collaborators [1].

While electron–phonon coupling as the underlying pairing mechanism has been pinpointed
by a large B isotope effect on Tc, proving B-related vibrations to be essential [2, 3], the
nature of the order parameter (namely the superconducting gap) has remained a matter
of debate. The order parameter has been intensively investigated by tunnelling and point
contact spectroscopy [4–16] as well as by high-resolution photoelectron spectroscopy [17,18].
While these techniques show an energy gap in the quasiparticle spectrum most probably
of s-wave symmetry, the magnitude of the gap, �(0), itself remained an open question:
tunnelling experiments initially revealed a distribution of energy gaps with lower boundary
2�1(0)/kBTc ≈ 1.1 and upper boundary 2�2(0)/kBTc ≈ 4.5. These values are either
considerably lower or distinctly larger than the weak-coupling BCS value of 2�(0)/kBTc =
3.53, and these controversial findings have been discussed in terms of gap anisotropy
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or more recently attributed to the presence of two gaps or multiple gaps [12, 18]. The
analysis of the electronic Raman continuum of MgB2 by Chen et al [13] also pointed to
the presence of two gaps with gap values within the limits indicated by the tunnelling
experiments [19].

While these experiments employ surface-sensitive techniques to determine the gap
properties, evidence for multigap behaviour emerges also from methods like heat capacity
or µSR measurements probing true bulk properties3. In the early heat capacity experiments
a typical jump-like anomaly is seen at Tc whose magnitude �Cp/Tc amounts at best to only
about 70–80% of the value 1.43γ N(Tc) predicted by weak-coupling BCS theory [2, 21–25].
γ N(Tc) is the Sommerfeld constant in the normal state which was obtained from heat capacity
measurements in high magnetic fields and which was determined to be 2.7–3 mJ mol−1 K−2.
The shape of the heat capacity anomaly compares reasonably well with BCS-type behaviour
assuming 2�(0)/kBTc = 3.53 with appropriately adjusted magnitude. An improved fit of the
detailed temperature dependence of the heat capacity anomaly was obtained when calculating
the heat capacity within the α-model [26] assuming a BCS temperature dependence of the gap
but with an increased ratio 2�(0)/kBTc = 4.2(2) [21]. This result matches very well with the
upper limit of the gap value consistently found in the tunnelling experiments and was suggested
as evidence that MgB2 is in the moderately strong-coupling limit. More recently, the excess heat
capacity observed close to Tc/4 by Bouquet et al [22] and Wang et al [24] has been attributed
to a second smaller gap. Fits with a phenomenological two-gap model assuming that the heat
capacity of MgB2 can be decomposed as a sum of the two individual heat capacities gave a
very good description with gap values of 2�1(0)/kBTc = 1.2(1) and 2�2(0)/kBTc ≈ 4 [27].
Recent muon-spin-relaxation measurements of the magnetic penetration depth are consistent
with a two-gap model [28].

Theoretically, multigap superconductivity in MgB2 was first proposed by Shulga et al [29]
to explain the behaviour of the upper critical magnetic field. On the basis of the electronic
structure, the existence of multiple gaps has been suggested by Liu et al [30] in order to explain
the magnitude of Tc. The electronic structure of MgB2 contains four Fermi surface sheets [31].
Two of them with 2D character emerging from bonding σ -bands form small cylindrical Fermi
surfaces around �–A. The other two originating from bonding and antibonding π -bands
have 3D character and form a tubular network. Liu et al [30] conclude from first-principles
calculations of the electron–phonon coupling that the superconducting gaps are different for
the individual sheets and they obtain two different order parameters, a larger one on the 2D
Fermi surface sheets and a second gap on the 3D Fermi surfaces; the latter was estimated to
be approximately a factor of three less than the former.

In the present paper we calculate the specific heat capacity from the spectral Eliashberg
function α2(ω)F (ω) first in the one-band model using the isotropic α2(ω)F (ω) function
as given by Kong et al [32]. Then we calculate the heat capacity in a two-band model
by reducing the sixteen Eliashberg functions α2

ij (ω)Fij (ω) appropriate for the four Fermi
surface sheets to four Eliashberg functions corresponding to an effective-two-band model
with a σ -band and π -band only. From the solution of the Eliashberg equations we obtain
a superconducting gap ratio �σ/�π � 2.63 in good agreement with the experimental
data. The two-band model explains the reduced magnitude of the heat capacity anomaly
at Tc very well and also reproduces the experimental observed excess heat capacity at low
temperatures.

3 Heat capacity experiments are a classical tool for identifying multiple gaps in superconductors. For example,
strong evidence for two energy gaps has been gained from heat capacity measurements on high-purity crystals of the
elemental superconductors Nb, Ta, and V (cf [20]).
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2. Theory

2.1. One-band model

First we discuss the specific heat in the isotropic single-band model with a strong (intermediate)
electron–phonon interaction (EPI). In the normal state and in the adiabatic approximation
the electronic contribution to the specific heat is determined from the Eliashberg function
α2(ω)F (ω) by means of the expression [33]

Cel
N (T ) = (2/3)π2N(0)k2

BT

[
1 + (6/πkBT )

∫ ∞

0
f (ω/2πkBT )α

2(ω)F (ω) dω

]
(1)

whereN(0) is a bare density of states per spin at the Fermi energy. The kernel f (x) is expressed
in terms of the derivatives of the digamma function ψ(x):

f (x) = −x − 2x2 Imψ ′(ix)− x3 Reψ ′′(ix). (2)

At low temperatures the specific heat has the well known asymptotic form Cel
N (T → 0) =

(1 +λ)γ0T , where λ = 2
∫ ∞

0 dωω−1α2(ω)F (ω) is the electron–phonon coupling constant and
γ0 = 2π2k2

BN(0)/3 is the specific heat coefficient for non-interacting electrons. At higher
temperatures the specific heat differs from this trivial expression (see the discussion in [34]).

For the superconducting state, an expression for the specific heat obtained by Bardeen
and Stephen [35] which is based on an approximate sum rule has often been used. We shall
however use an exact expression for the thermodynamical potential in the electron–phonon
system which is based on the integration of the electronic Green function over the coupling
constant:

� = �
(0)
el + �

(0)
ph + T

∑
ωn

∫ 1

0

dx

x
tr["̂(x)Ĝ(x)] (3)

where x is dimensionless; Ĝ(x) and "̂(x) are the exact electron Green function and the
self-energy, respectively, for a coupling constant of xλ. The functions �

(0)
el and �

(0)
ph are

the thermodynamic potentials for non-interacting electrons and non-interacting phonons,
respectively. Some further arithmetic leads to the expression for the difference between the
free energies, FN and FS , of the superconducting and normal state [36]:

−FN − FS

πN(0)T
=

ωc∑
n=−ωc

{
|ωn|(ZN(ωn)− 1)− 2ω2

n[(ZS(ωn))
2 − 1] + ϕ2

n

|ωn| +
√
ω2
n(Z

S(ωn))2 + ϕ2
n

+
ω2
nZ

S(ωn)(Z
S(ωn)− 1) + ϕ2

n√
ω2
n(Z

S(ωn))2 + ϕ2
n

}
(4)

where Z(ωn) is a normalization factor, ϕn = �n/Z(ωn) is an order parameter and �n is the
gap function.

The specific heat at temperature T is calculated according to

�Cel(T ) = T ∂2(FN − FS)/∂T
2. (5)

The specific heat jump�Cel(Tc) at T = Tc is determined by the coefficient β = Tc �Cel(Tc)/2
in FN − FS = βt2, where t = (Tc − T )/Tc.

2.2. Two-band model

We have calculated the sixteen Eliashberg functions α2
ij (ω)Fij (ω) where i and j label

the four Fermi surface sheets and thereafter combined them into four corresponding to
an effective-two-band model which contains only a σ - and a π -band. Their respective
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Figure 1. The four superconducting Eliashberg functions α2 F(ω) obtained from first-principles
calculations for the effective-two-band model and the isotropic Eliashberg function for the one-
band model. The coupling constant of the isotropic one-band model has a value of λiso = 0.87.

densities of states at the Fermi energy have values of Nσ (0) = 0.300 states eV−1/cell and
Nπ(0) = 0.410 states eV−1/cell. Similar coupling constants λσσ , λππ , λσπ , and λπσ which are
required for a two-band model were calculated earlier in [30]. The procedure of reducing the
sixteen Eliashberg functions of the real four-band system due to the four different Fermi surface
sheets to an effective-two-band model with only four coupling constantsλij is an approximation
which is based on the similarity of the two cylindrical and the two three-dimensional sheets
of the Fermi surface, requiring the same physical properties in both σ -bands or both π -bands.
More details can be found elsewhere [37].

The four Eliashberg functions α2
ij (ω)Fij (ω) for the effective-two-band model are shown

in figure 1. The most significant contribution comes from the coupling of the bond-stretching
phonon modes to the σ -band. The coupling constants corresponding to the superconducting
Eliashberg functions have been calculated to be λσσ = 1.017, λππ = 0.448, λσπ = 0.213,
and λπσ = 0.155. The small difference from the values given in [30] may be attributed to the
different first-principles methods used in the calculations of the Eliashberg functions.

Besides the spectral functions we need to know the Coulomb matrix elementµij . With the
help of the wavefunctions from our first-principles calculations we can approximately calculate
the ratios for the µ-matrix [37]. The σσ -, ππ -, and σπ -values were in the ratio 2.23/2.48/1.
This allows one to expressµ∗

ij (ωc) in terms of these ratios and one single free parameter, which
is fixed, to get the experimental Tc of 39.4 K from the solution of the Eliashberg equations. The
µ∗(ωc)matrix elements determined by this procedure areµ∗

σσ (ωc) = 0.210,µ∗
σπ (ωc) = 0.095,

µ∗
πσ (ωc) = 0.069, and µ∗

ππ (ωc) = 0.172.
Using our calculated Eliashberg functions on the imaginary (Matsubara) axis together

with the above matrix µ∗
ij (ωc), we obtain the gap values �σ = limT→0 �σ(iπT ) � 7.1 meV,

and �π � 2.7 meV, which corresponds to 2�σ/kBTc = 4.18 and 2�π/kBTc = 1.59. The
temperature dependences of the superconducting gaps are shown in figure 2. The filled circles
(squares) display the gap for the 2D σ -band (3D π -band). Due to interband coupling between
the bands, both gaps close, at the same critical temperature. For comparison, the BCS curve
(line) is also shown for a single gap (one-band-model) which closes at Tc = 39.4 K. The
corresponding single BCS gap would be 6 meV.
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Figure 2. The temperature dependences of the superconducting gaps from the solution of
the two-band Eliashberg equations. The values of the gaps at T = 0 K were obtained as
�σ (T = 0) = 7.1 meV and �π(T = 0) = 2.7 meV. The BCS value for the gap that corresponds
to Tc = 39.4 K is 6.0 meV at 0 K.

The extension of equation (1) to the two-band model gives

CN
el (T ) = 2π2

3
Ntot (0)k

2
BT + 4πkB[Nσ (0)(Iσσ + Iσπ ) + Nπ(0)(Iππ + Iπσ )] (6)

where Iij = ∫ ∞
0 f (ω/2πkBT )α2

ij (ω)Fij (ω) dω (i, j = π, σ ), and the function f (x) is given
by equation (2).

The generalization of the superconducting free energy (4) to the two-band model is
straightforward, and the heat capacity was obtained according to equation (5).

3. Comparison with experiment

For the comparison with experiment we have selected data obtained by our group [21] and by
Bouquet et al [22]. The anomaly clearly visible at Tc in the zero-field data is suppressed
by a magnetic field of 9 T in both experiments. In figure 3 we display the difference
�Cp = Cp(0 T) − Cp(9 T). The anomalies at Tc detected by the two groups clearly have
different magnitudes: the one described in [22] amounts to 133 mJ mol−1 K−1 at Tc and
represents the largest specific heat capacity anomaly reported for MgB2 so far4; the �Cp(Tc)

reported by our group is somewhat smaller. However, the shapes of the anomalies close to Tc
are very similar for the two samples. In fact, fitting the anomalies with the α-model revealed
identical ratios: 2�/kBTc = 4.2 with � = 7 meV for both samples [21, 22, 27].

First we will try to discuss the experimental results in terms of a conventional one-band
model. The specific heat in MgB2 was calculated using the isotropic spectral Eliashberg
function α2(ω)F (ω) of Kong et al [32]. This function yields an electron–phonon coupling

4 It is interesting that experiments on different samples show similar values for the specific heat jump �C �
113 mJ mol−1 K−1 [2],�C � 81 mJ mol−1 K−1 [24],�C � 133 mJ mol−1 K−1 [22],�C � 125 mJ mol−1 K−1 [23],
�C � 115 mJ mol−1 K−1 [25], �C � 92 mJ mol−1 K−1 [38].
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Figure 3. Experimental data on the heat capacity difference �Cp = Cp(0 T)−Cp(9 T) from [21]
(◦) and from [22] (�). The dashed curve is the theoretical result from the one-band model and the
thick solid curve corresponds to the two-band model, from the solution of the Eliashberg equations.
The two-band model reproduces the specific heat jump as well as the low-temperature behaviour
much better.

constant λ = 0.87 and, together with a Coulomb pseudopotential of µ∗ = 0.1, yields
Tc = 40 K. The calculated specific heat at Tc is γ N(Tc) = 1.94γ0 = 3.24 mJ mol−1 K−2

with γ0 = 1.67 mJ mol−1 K−2 from the band-structure calculations of [31, 32]. The specific
heat jump at Tc equals �C � 196 mJ mol−1 K−1, which is a factor of 1.5–2 larger than the
experimental values (see footnote 4). This corresponds to �C/(γ N(Tc)Tc) � 1.51, compared
to the BCS value of 1.43. The difference �Cel(T ) = CS

el(T ) − CN
el (T ) is shown in figure 3

(dash–dot curve) in comparison with the experimental data. Not only does the size of the jump
disagree with the experiment, but also the behaviour at low temperatures is different. The latter
is connected with the fact that at low temperature equation (4) for a single-band model leads to
the standard exponential dependence CS ∼ T −3/2 exp(−�/T ), while the experimental data
show a more complicated behaviour. Clearly there exists a discrepancy between experimental
data and a theoretical one-band model.

The solid curve in figure 3 represents the theoretical results for the two-band model
as described above. The low-temperature behaviour is in much better agreement with the
experiment. The specific heat jump is now significantly reduced in comparison with a single-
band model and reproduces surprisingly well the experimental data of [22]. With the data given
above we obtain from our theoretical calculation an electronic heat capacity in the normal state
of γ N(Tc) = CN

el (Tc)/Tc � 3.24 mJ mol−1 K−2, the same value as for the one-band model. The
absolute value of the specific heat jump in the two-band model is �C � 125 mJ mol−1 K−1,
corresponding to �C/(γ N(Tc)Tc) � 0.98 which is now smaller than the BCS value.

We would like to emphasize here that no fitting is involved in the theoretical calculations.
The only free parameter, which is in the Coulomb matrix elements, is already determined by
the experimental Tc of 39.4 K.

One could suspect that the difference between the theoretical results from the effective-
two-band model and our experimental data may be attributable to a different amount of
impurities in the samples compared to the samples of [22]. In the one-band model the critical
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temperature Tc as well as the value and the temperature dependence of�Cp(T ) are not affected
by non-magnetic impurities (Anderson theorem). This is in complete contrast to the situation
for the two-band model, where both quantities are strongly dependent on interband impurity
scattering. Interband impurity scattering leads to averaging of the gaps and thus to increase of
the �Cp/γ

N(Tc)Tc ratio. On the other hand, due to the decrease of Tc, the specific heat jump
only depends weakly on the scattering strength. In order to investigate the dependence of Tc
and of�Cp on the interband impurity scattering, we included the effect of interband impurities
in the Eliashberg equations. The results show that even for rather strong impurity scattering
1/2τ = 3πTc0 � 371 K, which leads to a drastic change of the critical temperature (decreasing
to Tc = 29.4 K) and strong averaging of the gaps, the specific heat jump remains practically
unchanged: �Cp � 120 mJ mol−1 K−1. This corresponds to a ratio �Cp/γ (Tc)Tc � 1.48,
which is very close to the corresponding value for a single-gap model. Therefore, interband
impurity scattering can explain the change of Tc in different samples, but is not responsible for
the observed different values of the specific heat capacity anomaly at Tc.

We have shown that a complete theoretical calculation from first principles using an
effective-two-band model can explain the major features in the specific heat measurement
of MgB2 surprisingly well. The theoretical framework presented goes beyond a simple
phenomenological two-gap model, because interband effects are included explicitly and
no fitting to experimental results has been performed. The reduced value of the heat
capacity anomaly at Tc as well as the low-temperature behaviour are in excellent agreement
with experimental results. The same first-principles approach using exactly the same
Eliashberg functions and Coulomb matrix elements has been used in order to explain optical
measurements [37] and tunnelling experiments [39] on the interesting superconductor MgB2.
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